[Home] [Why ...] [Boolean algebra] [Carnaugh Maps] [AND-OR-NOT] [Number Systems] [Combinatorial logic] [Sequential logic] [State-Machines] [Examples] [ Up ]
The basic logic functions and equivalent gates

Given a box with two inputs A, B and one output Fx - How many logic functions possible inside the box?

Answer:   Drag the mouse over the box below (hold the left button down)

 A B F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

There's  16 possible functions but not all that useful and given a name like: AND, NAND, OR, NOR, XOR, XNOR

 A F(NOT) 0 1 1 0

 A B F(AND) 0 0 0 0 1 0 1 0 0 1 1 1

 A B F(NAND) 0 0 1 0 1 1 1 0 1 1 1 0

 A B F(OR) 0 0 0 0 1 1 1 0 1 1 1 1

 A B F(NOR) 0 0 1 0 1 0 1 0 0 1 1 0

 A B F(XOR) 0 0 0 0 1 1 1 0 1 1 1 0

 A B F(XNOR) 0 0 1 0 1 0 1 0 0 1 1 1

 A /B F(ANDb1) 0 1 0 0 0 0 1 1 1 1 0 0

 /A /B F(NOR) 1 1 1 1 0 0 0 1 0 0 0 0

 A /B F(ORb1) 0 1 1 0 0 0 1 1 1 1 0 1

 /A /B F(NAND) 1 1 1 1 0 1 0 1 1 0 0 0